
I. 

LITERATURE CITED 

Yu. P. Pshenichnikov, Detecting Fine Structure in Crystals [in Russian], Metallurgiya, 
Moscow (1973). 

APPLICABILITY OF TIMOSHENKO-TYPE THEORIES TO LOCALIZED PLATE LOADING 

P. A. Zhilin and T. P. Ii'icheva UDC 539.3 

I. Introduction. Many calculations have been performed on localized loading for thin 
bodies of plate type. The basis is provided either by Kirchhoff's theory or by the non- 
classical theories of plates of Timoshenko type [I]. It is usually assumed that the two- 
dimensional theories of plates are not applicable directly by the point of application [I]. 
This is due to the essentially three-dimensional state of stress near that point. 

Here we examine the state of stress and strain in a thin plate by means of the three- 
dimensional and two-dimensional theories. The three-dimensional theory is characterized by 
a singularity in the displacements of r -I type, where r is the distance to the point A at 
which the localized force is applied. The singularity occurs only for the front surface of 
the plate containing the point A. It is shown here that the displacements of points in the 
median plane are finite. However, if the thickness 2h of the plate tends to zero, the dis- 
placements of the points in the median plane acquire a singularity of the form of in ro, where 
r0 is the distance from the point to the point A 0 representing the normal projection of point 
A on the median plane. The coefficient to the singularity inr0 will be called the intensity 
coefficient. If we consider the displacements of the points in the three-dimensional medium 
averaged over the thickness of the plate instead of the displacements of the median plane, 
they also have a singularity of inr0 type, but the intensity coefficient differs from that 
for the median plane. For ~ = 0 (v is Poisson's ratio), the difference in the intensity 
coefficients disappears. 

We now consider the two-dimensional theories. According to Kirchhoff's theory, the 
deflection of the plate, which is identified with the deflection of the median plane, is 
finite and of order O(h -3) if one assumes that the load is of order 0(I) and if we take the 
unit of length as the least dimension of the plate in plan. The intensity coefficient in 
the three-dimensional theory is O(h-1). Therefore, if h is small, the solution from Kirch- 
hoff's theory agrees closely with the three-dimensional one in the region llnr01 ~ CO(h-l), 
where C is a bounded function of r0, i.e., at some small distance from the point r0 = 0. The 
solution given by a theory of Timoshenko type differs from the previous in containing a 
singularity in the normal displacement of Inr0 type, and there is the question of comparing 
the intensity coefficients obtained from the three-dimensional and two-dimensional theories. 

The following treatment is based on the theory of simple shells [2-4], for which the 
basic relations applicable to the theory of plates are given in Sec. 3. 

2. Three-Dimensional Theory. We consider a problem discussed by Galerkin [5] for a 
rectangular plate loaded by a distributed normal load and freely hinged at the edges, where 
we make certain modifications. The plate is bounded by the planes x = 0, a, y = 0, b, z = 
• The boundary conditions take the form 

u ~ =  u 3 =  a ~ =  0 for x ~  O , a , u  z =  u 3 =  ~ 2 =  0 f o r y  = O,b;  ( 2 . 1 )  

= ~ = %2 = 0 f o r  z = - - h ,  ~ = p(x,y),%~ = %2 = O f o r  z = h.  ( 2 . 2 )  

If a localized force P is applied at the point (a/2, b/2, h), the surface load takes the 
form 

P(X' Y) =-- 7b --TJ kT--Wf (2.3) 

The solution according to [5] is expressed in terms of a biharmonic function ~(x, y, z) as 
follows : 
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2Gul = ~2~ 2Gu2 O~q~, V 2 _ Oa~0 --O--~'~z' = - - ~  2 a u a =  2 ( l - - v )  ~ z  ~ q~, (Yl = q~, - - ,  

% ~8 Oy ( l--v) c9z2 j ~ ,  ~a= (2--v) V 2 - ~ z  2 % v31=~xO (t--v) V 2 - ~ z  2 (p, 
2 2 2 w h e r e  A 2 = 3 2 / 3 x  2 + 3 / 3 y  + ~ 2 / 3 z  i s  t h e  L a p l a c e  o p e r a t o r  and  G i s  t h e  s h e a r  m o d u l u s .  The 

b i h a r m o n i c  f u n c t i o n  s a t i s f y i n g  ( 2 . 1 )  and  ( 2 . 2 )  t a k e s  t h e  f o r m  

tp (x, y, z) = ~ [Amn ch O:mnZ -t- Bran sh o~mnz + z (Cmn ch amnz q- Dnm sh amnZ)] sin )~mx sin P'nY" 

?nY6 n g  2 -- 2 2 Here ~m-- a '  ~ n = - ~ - '  ~ m ~ - - ~ m + g u '  

amnh sh O:mnh + 2v ch amnh 
Amn = - -  a%n (sh 2~mnh - -  2~mnh) e~n '  

O~mnh ch (Zmnh -~ 2v sh O~mnh 
B ~  = ~ (sh 2~=a +12~j  0 P~'  

oo 

p (x, y) = Z Pmn sin )~mz sin ~nY, 

sh OSmn h. Pmn 

a~n n (sh 2~Zmnh :[- 2amnh) 

ch amnh . P mn 
Dmn --- O~2mn (shamn h -- 2O~mnh ) ' 

ab  
�9 

Pmn = - '~  p (x, y) sin %m x sln ~tnydxdy. 
o o 

(2.4) 

We now examine 
sentation 

Here and 
brevity. 

We 

Galerkin's solution. For the normal deflection u3(x, y, z) we have the repre- 

2Gu 3 = ~,  {[2 (t - -  2v) ~zD --.(zgA] ch o~z --  r sh az + [2 (i - -  2v) cr 

-- ~2B] sh az -- o~Cz ch az} sin ~mx sin ~tny. 

subsequently, the subscripts m and n to amn , Amn , Bmn , "Cmn , Dmn are omitted for 

following quantities to compare (2.5) with 

h 

S " 
t z) dz, w o u a ( z , y , O ) .  

<~3>=~ ~3(~'Y' = 
--h 

data from plate theory: calculate the 

(2.5) 

(2.6) 

Also, we introduce the membrane deflection ~p(X,y), which is 
problem 

A~p = - - P ~ , Y ) , ~ I L  = o, A ~ O~/Ox 2 + 02/@ ~ 

i n  t h e  r e c t a n g l e  0 ~ x ~ a ,  0 ~ y ~ b .  

The  s o l u t i o n  t o  ( 2 . 7 )  t a k e s  t h e  f o r m  

a solution to the Dirichlet 

(2.7) 

~p(x,y)= ~ - ~ s i n ~ m x s i n ~ n Y .  (2 .8)  

The f u n c t i o n  p ( x ,  y )  i n  ( 2 . 7 )  a n d  ( 2 . 8 )  i s  t h e  same a s  i n  ( 2 . 4 ) .  We c a l c u l a t e  ( 2 . 6 )  
a n d  u s e  ( 2 . 8 )  t o  g e t  

2Gh <us> = 3 --2 2~ ~p (x, y) ~- 2 (l - -  ~ (sh 2ah - -  2 ~ h ) V )  hPmn sin )~m x sin ~tng ," ( 2 . 9 )  
m , n ~ l  

2Gw0 = ~ 2 ( l - - y )  chczh~-(zhshah Pmnsin)~mxsin~tng" ( 2 . 1 0 )  
a (sh 2ah - -  2ah) 

I f  t h e  l o a d  p ( x ,  y)  h a s  t h e  f o r m  of  ( 2 . 3 ) ,  t h e n  t h e  membrane  d e f l e c t i o n  qD;,(x, y) h a s  a 
l o g a r i t h m i c  s i n g u l a r i t y  a n d  a l l o w s  t h e  r e p r e s e n t a t i o n  [6 ]  

~ab 
P In 

q% (x, y) = - -  4__ ~ (2x__a)2 1_(2y__b)~ §  
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where the harmonic function e(x, yi is chosen such that ~,(z,y) becomes zero at the boundary 
of the rectangle 0 ~< x ~ a, 0 ~< y <~ b. Clearly, e(x, y) is bounded throughout the rectangle. 
We see that there is a substantial difference between (2.9) and (2.10): <u3> has a logarithmic 
singularity, whereas w0 does not. The series of (2.9) and (2.10) converge uniformly through- 
out the region and are infinitely differentiable functions. Of course, it is assumed that 
h~0. 

The physical meaning of the singularity in <uz> is fairly clear. In fact, Galerkin's 
solution shows that the normal deflection has a singularity at the surface z = h. An in- 
finitely thin layer near z = h is separated out as a thin membrane. After averaging, this 
membrane solution enters into (2.9). 

The series in (2.9) and (2.10) converge uniformly together with their derivatives of 
all orders if h ~ 0, while if h § 0 the functions represented by (2.9) and (2.10) contain 
singularities, which is clearly so because the plate degenerates into a membrane for h § 0, 
but not only to this. On calculating the asymptotes to <u3> and w0, we get the representa- 
tions 

1 t2 - -  7v 
< % > = % ( x , y ) §  2Ch 10 ~p(X'y)-4-O(h); ( 2 . 1 1 )  

1 3 (8-- 3v) ( 2 . 1 2 )  
Wo = r (x, y) -]- 2Gh 20 q)p (x, y) -~- 0 (h). 

Here %(x, y) is the deflection of a freely hinged Kirchhoff plate, i.e., 

A~q)o(x, y) = p(x, y)/D, D = 2Eha/3(t - -  ~ )  -= 4Gha/3(l - -  ~). ( 2 . 1 3 )  

The function %(x, y) is O(h-3), so if p(x, y) is a smooth function we need take only 
the first terms in (2.11) and (2.12). 

If on the other hand p(x, y) takes the form of (2.3), the second terms in (2.11) and 
(2.12) may be the main ones and cannot be neglected near the point x = a/2, y = b/2. 

Other characteristics may be examined similarly. We give expressions for some of them: 

_ ~ ~ . ~ + O ( h ~ ) ;  <u1> (2.14) 

h 

r 1 = --J" ~zdz = - -  vh c92q)p -]- 0 (hS); ( 2 .1  5 ) 
- h  OY2 

h 
02r 

Tz2 = t "r~2dz = ~vh axOy + 0 (ha); ( 2.1 6) 
--h 
h 

N I =  y ~,Jz=--D~-x (ArPo); (2.'7) 

--h 

h y ( 02q)~ 02q)o ~ 2,vh2C32~p , 
*~--~t- o (h'); (2 18) 

--h 

h 02% 2vh 2 t~2q) p 
M12 t "rz~zdz = - -  D (l = _  --~) a--~y~- ~ ax@-l -O(h4) .  (2.19) 

- h  

Note tha t  express ion  (2.17) f o r  the shear ing fo rce  is  exact ,  whereas ( 2 . 1 4 ) - ( 2 . 1 6 ) ,  
(2 .18 ) ,  and (2.19) have been der ived  a s y m p t o t i c a l l y .  The formulas f o r  <u2>, T2, N2, M2 have 
been der ived from those f o r  <uz>, T1, N1, M1 by means of the s u b s t i t u t i o n s  3/3x ++ 3/3y.  

I t  f o l l ows  from (2.12)  t ha t  i f  the load takes the form of (2.3)  the d isplacements of 
points in the median plane will also have a singularity of the form inro for h § 0. On 
comparing (2.11) and (2.12) we see that <u3> and w0 have identical singularities for h § 0, 
but the intensity coefficients are different. The difference in these coefficients vanishes 
for v = 0. 

3. Plate Theory. If a thin parallelepiped is considered as a plate, then the equations 
of equilibrium can be written in the usual form [7]: 

orx/aX-~ OT2z/oy = O, OTz~/ax-t- Or2/ay = O; ( 3 . 1 )  
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Ni ---- aM1/ax q- aM~l/ay, N 3 = aM2/ay q- aMn/ax, aNx/aX q-ON2/ay = --p(x,  y). 

The elastic relations in the theory of simple plates take the form [4] 

(3.2) 

vh 2Eh 
T1 -- t --  v p (x, y) ~- ~ (81 -~ re2), TI~ = 2Gho); ( 3 . 3 )  

vh 2 2Eh a Eh 3 
M1--3 {1--~) p(x' y ) - ~ ~ ( ~ l  ~-~2)' M12--3 (l~-v)(T1 ~-T2); (3.4)  

N1 : 2Ghr0?i. ( 3 . 5 )  

The o t h e r  f i v e  r e l a t i o n s  a r e  d e r i v e d  f r o m  t h e  a b o v e  by  t h e  s u b s t i t u t i o n  1 ~ 2 i n  t h e  
s u b s c r i p t s .  

The f o l l o w i n g  i s  t h e  r e l a t i o n s h i p  b e t w e e n  t h e  s t r a i n s  and  t h e  d i s p l a c e m e n t s  and  r o t a -  
t i o n s  : 

el = au/ax, % = aolay, ~ = avlax H-au l@;  (3.6) 
>:i = a911ax, • = a%lay, ~ + ~2 = agJaz H- a911ay; (3.7) 

Y1 = % q- awlax, 73 = 9~ q- am/ay, (3.8) 

where  u ,  v ,  and  w a r e  t h e  d i s p l a c e m e n t s  of  p a r t i c l e s  i n  t h e  p l a t e  a nd  91 a nd  92 a r e  t h e  a n g l e s  
o f  r o t a t i o n  of  t h e s e  p a r t i c l e s .  

I f  we a d o p t  K i r c h h o f f ' s  h y p o t h e s i s ,  t h e  r i g i d i t y  GhF0 i n  t r a n s v e r s e  s h e a r  s h o u l d  t e n d  t o  
i n f i n i t y ,  w h e r e a s  f o r  t h e  s h e a r i n g  f o r c e s  N a (a = 1, 2) t o  be  f i n i t e  i t  i s  n e c e s s a r y  t h a t  

Yo~ § 0: 

?= = 0 :~  9 i  L --am~am, 92 = - - a w / a y .  (3 .9 )  

We substitute (3.9) into (3.7) and (3.7) into (3.4) to get Gol'denveizer's relations 
[8]. However, the meanings of the displacements and rotations in this theory of simple plates 
differ from those in traditional versions, namely: The following relations apply: 

�9 u = < ~ > ,  v = < ~ 2 > ,  ~ = < u 3 > .  

The angles of rotation 9~ in the plate are related to the displacements of particles 
in a three-dimensional medium by 

__ 3 [ 
9~ (x, y) - ~ J % (x, y, z) zdz (a = I, 2). 

--h 

The boundary conditions corresponding to (2.1) in plate theory take the form 

v = w = 9 3  = 0 ,  r i  = M 1  = 0 a t  x = 0 ,  a; ( 3 . 1 0 )  

tt = W = 9 i  = 0 ,  r 2 = M e  = 0 a t  y = 0 ,  b.  (3 .11)  

The boundary-value problem of (3. I ) - ( 3 . 8 ) ,  (3.10) ,  (3.1 I) has an obvious so lu t ion ,  which 
is given here without derivation: 

v agv ~i O { v g v _ ~  ~. 
u-- 46 am' =-~-z ~,~'-h +o1' (3.12) 

W = 9o (X, Y) -~--~-'~ (-~o -- "-~-) 9 ,  (x' Y); (3.13) 

2 a29p a 9p = -- D 
T 1 = -  vh "T-E-' T.u -~- vh - - ,  N 1 (A90); ay ~ axay ax (3.14) 

>02 a~9 \ 

MIz=__D;I__~)O~9o_4_vh~Oe9P, -- -- (3.16) 
axay-- 3 Oxay" 

The formulas for v, 93 , T2, N2, M2 are derived from those for u, 9i , Ti, Ni, Mi by the 
substitution 8/~x ~ 8/~y. In these expressions, the functions 9a(x,y) and 9p(z,y) have the 
same meaning as in Sec. 2 

The solution from Kirchhoff's theory is obtained from (3.12)-(3.16) if we assume that 
9p(z,y)~0,; the solution given by Reisner's theory takes the form 
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w = r Y) + (3/5Gh)~p(x, y) ,  u = v = 0 .  ( 3 . 1  7 )  

The solution from Gol'denveizer's theory is obtained from (3.12)-(3.16) with F0 = ~. 

Discussion. We compare the results of (3.12)-(3.16) from the two-dimensional theory 
of Timoshenko type with the consequences (2.11), (2.12), (2.15)-(2.19) of the three-dimen- 
sional theory, which shows that all quantities coincide up to O(h 2) if p(x, y) is a smooth 
function. 

Then for a smooth load we get identical expressions for the normal deflection, moments, 
and shearing forces from Kirchhoff's theory, from the theory of Timoshenko type, and from 
the three-dimensional theory for a thin plate. 

If on the other hand the load has the form of (2.3), the position is radically altered. 
In that case, ~p(x, y) has a logarithmic singularity and one cannot neglect terms containing 
~p(x, y). On comparing (2.11), (2.12), (3.13) we see that <u3>, w0, w have identical singu- 
larities of inr0 type for h § 0, while as regards the intensity coefficients, any coincidence 
is dependent on the value of the shear coefficient F0. If F0 = 5/(6 -- ~), the two-dimensional 
theory gives an intensity coefficient the same as the solution from the three-dimensional 
theory <u3> averaged over the thickness. On the other hand, the displacement w0 of the 
median plane has a different intensity coefficient. Also, for h ~ 0, the displacement of the 
median surface of (2.10) does not have a singularity. 

An interesting point is that Reisner's theory gives F0 = 5/6 and if v = 0 the expression 
(3.17) for the normal deflection coincides with the consequence from the three-dimensional 
theory, whereas it does not for v ~ 0. Also, there are differences in the expressions for 
the tangential displacements, but these play only a secondary part. 

The solution from Gol'denveizer's theory contains the same singularity as the average 
solution from the three-dimensional theory, but these results differ in intensity coefficient. 

Therefore, if we identify the solution from a two-dimensional theory of Timoshenko type 
with the solution from the three-dimensional theory averaged over the thickness, for F0 = 
5/(6 -- v) we get close agreement in qualitative and quantitative respects (there are iden- 
tical singularities and identical intensity coefficients). If on the other hand we identify 
the deflection in the two-dimensional theory with the displacement of the median surface, 
then for h ~ 0 we get a qualitative difference between the results, since the displacement 
of the median surface does not have a singularity, while for h § 0 the singularities will be 
of the same form but the intensity coefficients will differ. 

Also, Kirchhoff's theory gives a result qualitatively different from the consequences 
of the three-dimensional theory, since according to Kirchhoff's theory the deflection is 
bounded. 

Comparison of (2.17) and (3.14) for the shearing forces shows that they coincide exactly. 
Also, as the expressions for the shearing forces contain not the function ~0(x,y) itself but 
only its Laplacian A~0, the series representing the shearing forces may be summed by means 
of elliptic functions [9]. 

As the plate is rectangular, in the case of free hinging at the edge we should have 
A%I L = 0 .  

We solve (2.13) for A~0 to get 

ab 

A% (x, y) = -- ~i --~[ [ K (x' Y; ~' ~) P (~' ~) d~dq' ( 3  �9 18) 
0 9  

where K(x, y; ~, ~) is the Green's function for the Laplace equation. This in turn can be 
represented [6] as 

K ( x , y ; ~ , q )  = - -  l n l f ( z ) [ =  - - - ~ R e l n f ( z ) ,  ( 3 . 1 9 )  

where f(z) is a function of the complex variable that maps a rectangle in the plane z = x + 
iy into unit circle in the plane ~ = ~ + in. 

That function is [10] 
~(~- ~)~(~+ ~) 

/(~)=~(~-D~(~+D' ~=~+iY '  ~ = ~ + t ~ ,  
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where o(U) is the Weierstrass sigma function with half-periods 601 = a, 602 = ib. 

We express the sigma function in terms of the theta function [11] and use (3.18) and 
(3.19) to get for the ease of a plate loaded by a localized force that 

where P is the intensity of the localized force and (~, ~) is the point of application. 

From (3.14) the expression for the shearing force takes the form 

N z .... ~--~a Re [8z #~} + - -  (3.20) 

The function 01(v) has zeros at the points v = m + nbi/a, where m and n are integers. 
Consequently, the functions appearing in the denominators in (3.20) will have zeros at the 
points 

z = ~ + 2am ~ 2bni, z = :~--~ 2am + 2bni. 

However ,  t h e  r e c t a n g l e  0 ~ x ~ a ,  0 ~ y ~ b c o n t a i n s  o n l y  one p o i n t  z = 5, t h e  p o i n t  of  a p -  
p l i c a t i o n  of  t he  l o c a l i z e d  f o r c e .  T h e r e f o r e ,  e x p r e s s i o n  ( 3 . 2 0 )  w i l l  be  e v e r y w h e r e  bounded ,  
a p a r t  f rom t h e  p o i n t  of  a p p l i c a t i o n .  
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