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APPLICABILITY OF TIMOSHENKO-TYPE THEORIES TO LOCALIZED PLATE LOADING

P. A. Zhilin and T. P. Il'icheva ' UDC 539.3

1. Introduction. Many calculations have been performed on localized loading for thin
bodies of plate type. The basis is provided either by Kirchhoff's theory or by the non-
classical theories of plates of Timoshenko type [1]. It is usually assumed that the two-
dimensional theories of plates are not applicable directly by the point of application [1].
This is due to the essentially three~dimensional state of stress near that point.

Here we examine the state of stress and strain in a thin plate by means of the three-
dimensional and two-dimensional theories. .The three-dimensional theory is characterized by
a singularity in the displacements of r—! type, where r is the distance to the point A at
which the localized force is applied. The singularity occurs only for the front surface of
the plate containing the point A. It is shown here that the displacements of points in the
median plane are finite. However, if the thickness 2h of the plate tends to zero, the dis-
placements of the points in the median plane acquire a singularity of the form of 1n ro, where
rg is the distance from the point to the point A; representing the normal projection of point
A on the median plane. The coefficient to the singularity Inro will be called the intensity
coefficient. If we consider the displacements of the points in the three-dimensional medium
averaged over the thickness of the plate instead of the displacements of the median plane,
they also have a singularity of lnrg type, but the intensity coefficient differs from that
for the median plane. For v = 0 (v is Poisson's ratio), the difference in the intensity
coefficients disappears.

We now consider the two—-dimensional theories. According to Kirchhoff's theory, the
deflection of the plate, which is identified with the deflection of the median plane, is
finite and of order O(h™3) if one assumes that the load is of order 0(1) and if we take the
unit of length as the least dimension of the plate in plan. The intensity coefficient in
the three-dimensional theory is 0(h™!). Therefore, if h is small, the solution from Kirch-
hoff's theory agrees closely with the three-dimensional one in the region llnrol < cO(h™Y),
where C is a bounded function of rp, i.e., at some small distance from the point rg = 0. The
solution given by a theory of Timoshenko type differs from the previous in containing a
singularity in the normal displacement of lnr, type, and there is the question of comparing
the intensity coefficients obtained from the three-dimensional and two-dimensional theories.

The following treatment is based on the theory of simple shells [2-4], for which the
basic relations applicable to the theory of plates are given in Sec. 3.

2. Three-Dimensional Theory. We consider a problem discussed by Galerkin [5] for a
rectangular plate loaded by a distributed normal load and freely hinged at the edges, where
we make certain modifications. The plate is bounded by the planes x = 0, g, y = 0, b, z =
*h. The boundary conditions take the form

u2=u3=01:0f01‘ .zz:O,a,u1=u3=Gg=0fory=0,b; : (2_1)
O3 = Tgi = Ty = 0 for z= —h, 03 = p(z, ), Ty = Ty = 0 for z =h. (2.2)

Lf a localized force P is applied at the point (a/2, b/2, h), the surface load takes the
form

p(z,y)=—~§b.6(%—%)6(_g—l———é-). (2.3)

The solution according to [5] is expressed in terms of a biharmonic function e(x, vy, z) as
follows:
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where A% = 3%2/3x% + 82/8}72 + 32/3z% is the Laplace operator and G is the shear modulus. The
biharmonic function satisfying (2.1) and (2.2) takes the form
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We now examine Galerkin's solution.
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For the normal deflection usz(x, y, z) we have the repre-

(2.5)

— &”Bl sh az — a*Cz ch az) sin A,z sin p,y.

Here and subsequently, the subscripts m and n to agyy, Ayn, Bpns Cpns Dpn are omitted for

brevity.

We calculate the following quantities to compare (2.5) with data from plate theory:

h

<u3> = 51'_[ ug (x, y» 2) dz, W, =Ug (75 ¥ 0).

—~h

(2.6)

Also, we introduce the membrane deflection g¢p(z, ¥), which is a solution to the Dirichlet

problem

Ap, = —p(z, ¥), 9], = 0, A = 8%/02 4 0*/oy*

in the rectangle 0 S x < a, 0 <y < b.
The solution to (2.7) takes the form
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The function p(x, y) in (2.7) and (2.8) is the same as in (2.4).

and use (2.8) to get
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We calculate (2.6)
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If the load p(x, y) has the form of (2.3),

mn SI0 A @ sin poy.

then the membrane deflection @z, ¥) has a

logarithmic singularity and allows the representation [6]
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where the harmonic function @(x, y) is chosen such that ¢4z, y) becomes zero at the boundary
of the rectangle 0 S xS a, 0 €y <b, Clearly, 8(x, y) is bounded throughout the rectangle.
We see that there is a substantial difference between (2.9) and (2.10): <u3z> has a logarithmic
singularity, whereas wo does not. The series of (2.9) and (2.10) converge uniformly through-
out the region and are infinitely differentiable functions. Of course, it is assumed that

h = 0.

The physical meaning of the singularity in <us> is fairly clear. In fact, Galerkin's
solution shows that the normal deflection has a singularity at the surface z = h. An in-
finitely thin layer near z = h is separated out as a thin membrane. After averaging, this
membrane solution enters into (2.9).

The series in (2.9) and (2.10) converge uniformly together with their derivatives of
all orders if h # 0, while if h > 0 the functions represented by (2.9) and (2.10) contain
singularities, which is clearly so because the plate degenmerates into a membrane for h - 0,
but not only to this. On calculating the asymptotes to <u3> and wo, we get the representa-
tions

2 7 :
Cugd = @ (20 9) -+ g O (@ ¥) - O (4% (2.11)

2.12
0y = 9, (2 ) + g g2 @ (2 1) + 0 (). (2.1

Here g, ¥} is the deflection of a freely hinged Kirchhoff plate, i.e.,
Agy(z, y) = plz, y)/D, D = 2ER3/3(1 — v?) = 4GR3/3(1 — v). (2.13)

The function gz, » is 0(h™?%), so if p(x, y) is a smooth function we need take only
the first terms in (2.11) and (2.12).

If on the other hand p(x, y) takes the form of (2.3), the second terms in (2.11) and
(2.12) may be the main ones and cannot be neglected near the point x = a/2, v = b/2.

Other characteristics may be examined similarly. We give expressions for some of them:
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Note that expression (2.17) for the shearing force is exact, whereas (2.14)-(2.16),
(2.18), and (2.19) have been derived asymptotically. The formulas for <u,>, Tz, Nz, M, have
been derived from those for <u;>, T3, Ny, M; by means of the substitutions 3/9x Z 3/9y.

It follows from (2.12) that if the load takes the form of (2.3) the displacements of
points in the median plane will also have a singularity of the form Inr, for h = 0. On
comparing (2.11) and (2.12) we see that <u3z> and wo have identical singularities for h -+ O,
but the intensity coefficients are different. The difference in these coefficients vanishes
for v = 0.

3. Plate Theory. If a thin parallelepiped is considered as a plate, then the equations
of equilibrium can be written in the usual form [7]:

8T410z ++ 0Ty ldy = 0, 0T1,/0z -+ 8Ty/ay = 0; (3.1)
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Ny = 0M:/0z + 0My /3y, Ny = 0M,y/oy - 0M 0z, ON,/oz -+ ON,/ay = —p(z, y). (3.2)

The elastic relations in the theory of simple plates take the form [4]

vh .
Tl_ ,VP(-??,J)—I- 2(3 +V8) =2Gh0); (3.3)

h2 2Eh3 Ehs s
ﬂ’[ —3(1 V)P(Z,J)*}- ( 2)(% —I—’VK) Mlgzm(rl_*_-;z); (3.4)
N, = 2GhTgy;. o (3.5)

The other five relations are derived from the above by the substitution 1 Z 2 in the
subscripts.

The following is the relationship between the strains and the displacements and rota-
tions:

& = uldz, e, = 0vldy, ® = dv/dz + duldy; (3.6)
Ay = 0@ /0x, %y = 0Qyly, Ty + Ty = ?CPz/ax -+ 3,/d9y; (3_ .7
1= @1+ dwloz, ¥y = @, + dwloy, (3.8)

where u, v, and w are the displacements of particles in the plate and ¢ and ¢, are the angles
of rotation of these particles.

If we adopt Kirchhoff's hypothesis, the rigidity Ghly in transverse shear should tend to
infinity, whereas for the shearing forces Ny (o = 1, 2) to be finite it is necessary that
a * 0O
Yo = 0= @1 = —dw/oz, ¢, = —dwldy. (3.9)
We substitute (3.9) into (3.7) and (3.7) into (3.4) to get Gol'denveizer's relations

[8]. However, the meanings of the displacements and rotations in this theory of simple plates
differ from those in traditional ver31ons, namely. The follow1ng relations apply:

U= <u1> v= <”2>, w == <u3>

The angles of rotation ¢, in the plate are related to the displacements of particles
in a three-dimensional medium by

'q)a (2, ¥) =_3§ 5. uy (T, Y, 2) 2dz (@ =1, 2).
2 J

The boundary conditions corresponding to (2.1) in plate theory take the form
v=w=g,=0,T;=M;=0 at z=0, q; (3.10)
u=w=q;=0T,= M;=0at y=0,b (3.11)

The boundary-value problem of (3.1)-(3.8), (3.10), (3.11) has an obvious solution, which
is given here without derivation:
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The formulas for v, @, Ty, N2, My are derived from those for u, ¢;, Ti, N1, M; by the
substitution 3/3x Z 3/3y. 1In these expressions, the functions @z, ¥ and: 9p(=,¥) have the
" same meaning as in Sec. 2

The solution from Kirchhoff's theory is obtained from (3.12)-(3.16) if we assume that
5z, ¥) =0.; the solution given by Reisner's theory takes the form
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w = @z, y) + (B/5Gh)gy(z, y), u = v =0 (3.17)

The solution from Gol'denveizer's theory is obtained from (3.12)-(3.16) with Ty = =.

Discussion. We compare the results of (3.12)-(3.16) from the two—dimensional theory
of Timoshenko type with the consequences (2.11), (2.12), (2.15)-(2.19) of the three-dimen-
sional theory, which shows that all quantities coincide up to 0(h®) if p{x, y) is a smooth
function.

Then for a smooth load we get identical expressions for the normal deflection, moments,
and shearing forces from Kirchhoff's theory, from the theory of Timoshenko type, and from
the three-dimensional theory for a thin plate.

If on the other hand the load has the form of (2.3), the position is radically altered.
In that case, @p(z,y) has a logarithmic singularity and one cannot neglect terms containing
9p(=, ¥) . On comparing (2.11), (2.12), (3.13) we see that <uz>, wg, w have identical singu-
larities of Inrg type for h + 0, while as regards the intensity coefficients, any coincidence
is dependent on the value of the shear coefficient I'y. If Ty = 5/(6 —v), the two-dimensional
theory gives an intensity coefficient the same as the solution from the three-dimensional
theory <us> averaged over the thickness. On the other hand, the displacement wo of the
median plane has a different intensity coefficient. Also, for h # 0, the displacement of the
median surface of (2.10) does not have a singularity.

An interesting point is that Reisner's theory gives T'y = 5/6 and if v = 0 the expression
(3.17) for the normal deflection coincides with the consequence from the three-dimensional
theory, whereas it does not for v # 0. Also, there are differences in the expressions for
the tangential displacements, but these play only a secondary part.

The solution from Gol'denveizer's thecry contains the same singularity as the average
solution from the three-dimensional theory, but these results differ in intensity coefficient.

Therefore, if we identify the solution from a two—dimensional theory of Timoshenko type
with the solution from the three-dimensional theory averaged over the thickness, for Ty =
5/(6 — v) we get close agreement in qualitative and quantitative respects (there are iden-
tical singularities and identical intensity coefficients). If on the other hand we identify
the deflection in the two-dimensional theory with the displacement of the median surface,
then for h # 0 we get a qualitative difference between the results, since the displacement
of the median surface does not have a singularity, while for h - O the singularities will be
of the same form but the intensity coefficients will differ.

Also, Kirchhoff's theory gives a result qualitatively different from the consequences
of the three—dimensional theory, since according to Kirchhoff's theory the deflection is
bounded.

Comparison of (2.17) and (3.14) for the shearing forces shows that they coincide exactly.
Also, as the expressions for the shearing forces contain not the function @y, y itself but
only its Laplacian Ag,, the series representing the shearing forces may be summed by means
of elliptic functions [9].

As the plate is rectangular, in the case of free hinging at the edge we should have
Aol = 0.

We solve {2.13) for A¢y to get
ab
sgyen=—4 [ (K@t nrE man (3.18)
" oo

where K(x, y; &, n) is the Green's function for the Laplace equation. This in turn can be
represented [6] as

1 1
K(:c,y; E’ 'fl)=“ﬁln“(z)l=—’ﬁﬁelﬂf(z), (3-19)

where f(z) is a function of the complex variable that maps a rectangle in the plane z = x +
iy into unit circle in the plane ¢ = £ + in.

That function is [10]
o(z—08a(z+0)

6= G—Dolz+0"

=z, [=E+in,
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where o(U) is the Weierstrass sigma function with half-periods w1 = a, w2 = ib,

We express the sigma function in terms of the theta function [11] and use (3.18) and
(3.19) to get for the case of a plate loaded by a localized force that

Ag, (= y)z—'Ij‘K(x &)= P Re ln Bl(f—g;.g)el(%%),
0 D “2nD BI(Z;Q)GI(ZS;C)

where P is the intensity of the localized force and (£, n) is the point of application.

From (3.14) the expression for the shearing force takes the form
(59, 515 al5) il
81( Za\} 91( 2a ! Za) ! 2a
:—tL e41) o (2=L} o (zE\]
o(50) o) alm e
The function 9;(v) has zeros at the points v = m + nbi/a, where m and n are integers.

Consequently, the functions appearing in the denominators in (3.20) will have zeros at the
points

(3.20)

P
Ne=—Zm

z= =+ -+ 2am | an.i, 2= +( -+ 2am -~ 2bni.

However, the rectangle 0 € x < @, 0 € y € b contains only one point z = g, the point of ap-
plication of the localized force. Therefore, expression (3.20) will be everywhere bounded,
apart from the point of application.
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